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Abstract
West Nile virus is an arthropod-borne Flavivirus transmitted by Culex mosquitoes. Birds are the primary hosts. However, the virus can be transmitted to humans 
through mosquito bites. Human infection is mostly asymptomatic, but 1 in 5 may develop illness: West Nile fever or severe West Nile neuroinvasive disease. 
Although the virus and disease are spreading in Europe, no locally acquired infections have been reported in Belgium. However, there is a real risk that West 
Nile virus infections will occur in Belgium in the near future. Because children can become infected and ill, pediatricians must be aware of the disease. In this 
manuscript, we describe the symptoms and epidemiology of West Nile virus disease. 

Introduction
The West Nile virus (WNV) is a single-stranded RNA virus of the family 
Flaviviridae, genus Flavivirus. It is an arthropod-borne virus (“arbovirus”) 
transmitted by mosquitoes, mainly of the genus Culex. Birds, both 
migratory and non-migratory, are the primary hosts of WNV. The virus 
is maintained in nature in an enzootic bird-mosquito-bird transmission 
cycle. The virus can be transmitted to mammalian species through 
mosquito bites. In particular, humans and horses can develop disease. 
However, they are considered dead-end hosts because they do not 
contribute to the transmission cycle (Figure 1) (1). 

Human WNV infection was first detected in a woman in the West Nile 
district of Uganda in 1937 (2). WNV is the most widely distributed arbovirus 
in the world (3). It is widespread in Africa, the Middle East and western 
Asia. Serological surveys have demonstrated WNV circulation in Europe 
since the 1950s. Human disease affects southern, eastern and western 
Europe, and human cases have increased in recent decades (4, 5). The 
virus emerged in the Americas in 1999. After its initial detection in New 
York, the virus spread dramatically and rapidly across the continent. Today, 
WNV is the leading mosquito-borne viral infection and the most common 
cause of viral encephalitis in the United States (6). This rapid spread and 
the potential for serious health problems are reasons for careful vigilance. 

Human WNV infection 
Human infection can result in 3 scenarios: asymptomatic infection, febrile 
illness (West Nile fever (WNF)), or severe disease affecting the central 
nervous system (West Nile neuroinvasive disease (WNND)). Asymptomatic 
infection occurs in approximately 80% of infected individuals, WNF in 
approximately 20%, and WNND in ≤ 1% (1, 7). In terms of incidence, 
pediatric cases account for 4% of all WNND cases, while 96% of WNND 
occurs in adults (8, 9).

After an incubation period of 2 to 15 days (up to 21 days in 
immunocompromised individuals), WNF in children presents as a 
relatively mild illness with fever (sometimes high), headache, muscle 
weakness, muscle and joint aches, and fatigue (10). In 50-80% of 

cases, a maculopapular rash develops on the chest, back, and arms. 
Other possible symptoms include vomiting and diarrhea, eye pain, and 
lymphadenopathy. Acute symptoms last 3 to 10 days, but full recovery, 
especially from fatigue, may take up to 60 days (11, 12). 

The 3 most common presentations of WNND in children are meningitis, 
encephalitis, and acute flaccid paralysis (AFP). In contrast to adults, 
meningitis is a more likely presentation in children than encephalitis. 
Meningitis is characterized by nuchal rigidity, headache, and other classic 
meningitis symptoms. Besides headache, encephalitis can present with 
altered consciousness, lethargy, personality changes, focal neural deficits, 
seizures, and other movement disorders. AFP has been reported in 1% 
of children with WNND and may occur with or without encephalitis. As in 
poliomyelitis, WNV-associated AFP is caused by invasion of the anterior 
horn cells, resulting in progressive asymmetric flaccid paralysis without 
sensory abnormalities, sometimes requiring mechanical ventilation (9, 
11, 12). Brain magnetic resonance imaging often appears normal, but 
signal abnormalities may be observed in the basal ganglia, thalamus, and 
brainstem in cases of WNV encephalitis, and in the spinal cord in cases 
of WNV acute flaccid paralysis (10). Recovery from WNND takes weeks to 
months and may result in long-term sequelae, mainly fatigue and apathy, in 
50% of cases. Although children with WNND have a better prognosis than 
older, they remain at risk for serious neurological sequelae or death, with a 
mortality rate of 1% compared to 14% in adults (13). WNV infections can 
also trigger Guillain-Barré syndrome (10). Finally, WNV infections can rarely 
cause cardiac dysrhythmias, myocarditis, rhabdomyolysis, optic neuritis, 
uveitis, chorioretinitis, pancreatitis, hepatitis, and orchitis.

Transmission of the virus is primarily through a mosquito bite and occurs 
when mosquitoes are most active, which is from June to November in 
Europe (14). Therefore, WNV is primarily a seasonal disease. 

Transmission by blood transfusion or organ donation has been described, but 
can be prevented by screening blood and organ donors in areas of WNV activity. 

In 2002, a case of intrauterine transmission was first described in 
a child born to a mother infected with WNV at 27 weeks' gestation 
who developed neuroinvasive disease. The infant had severe central 
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nervous system abnormalities and chorioretinitis at birth, with positive 
markers for WNV infection in blood and cerebrospinal fluid (both anti-
WNV IgM positive) and in placental and umbilical cord tissue (both WNV 
PCR positive) (15). Subsequently, several studies were conducted on 
the occurrence of intrauterine transmission (16-19). In a total of 120 
pregnant women with WNV infection, there were 3 newborns with possible 
congenital infection: 1 infant with WNV meningitis at 10 days of age, 1 
infant born with rash (and bicuspid aortic valve and aortic coarctation), 
and 1 infant with fatal WNV encephalitis. The problem is that congenital 
intrauterine infection could not be diagnosed with certainty due to the 
lack of umbilical cord blood and serum from the newborns. Intrauterine 
transmission is possible, but apparently very rare.

A first case of transmission through breastfeeding was also described 
in 2002. A breastfeeding mother had contracted WNV infection from a 
postpartum transfusion and developed WNND. WNV RNA and specific 
IgM antibodies were detected in the breast milk. The infant remained 
healthy, but at 25 days of age, serum specific IgM antibodies turned 
positive (20). Hinckley et al. reported on 6 infants breastfed by mothers 
with WNV infection. 5 of the 6 infants developed no clinical or biological 
signs of infection. 1 infant developed a rash 11 days after the onset 
of maternal infection, but was not tested (21). Analysis of a total of 46 
breast milk samples from mothers with WNV infection revealed specific 
IgM antibodies in 15/46 (33%) (18, 21). In conclusion, mother-to-child 
transmission through breastfeeding is possible, but remains rare. The 
Centers for Disease Control and Prevention (CDC) recommends continued 
breastfeeding during maternal WNV infection because the risk of WNV 
transmission does not outweigh the benefits of breastfeeding (22). 

Laboratory diagnosis is accomplished by the detection of anti-WNV 
IgM (and IgG) antibodies in the blood or cerebrospinal fluid (CSF) or 
by the detection of viral RNA by PCR in the blood or CSF (1, 7, 11). 
CSF pleocytosis is generally lymphocytic, but can be neutrophilic in the 
beginning (10). 

Anti-WNV IgM antibodies typically become detectable 3 to 9 days after the 
onset of symptoms and can persist for 30 to 90 days, sometimes up to a 
year. Therefore, a positive IgM test result may not always indicate acute 
infection. Anti-WNV IgG can be detected as early as 8 days following illness 
onset (it generally appears shortly after IgM) and persists for years (10). 
Diagnosis based on IgG requires collection of an acute and convalescent 
sample (2 to 3 weeks apart) to demonstrate seroconversion or at least a 
4-fold increase in titer. Diagnosis based on antibodies is complicated by 
significant cross-reactivity with antibodies to other viruses of the genus 
Flavivirus, e.g. after infection with tick-borne encephalitis virus or dengue 

virus, but also after vaccination against 
yellow fever or Japanese encephalitis. 
Positive results should be confirmed by a 
virus neutralization assay. IgM detection 
in CSF indicates central nervous system 
infection and is typically detectable 1 to 8 
days after the onset of neurologic illness.

Diagnosis can also be confirmed by 
detection of viral RNA by PCR in blood 
or CSF. However, as in most arboviruses, 
viremia is low, and the viremic period 
is short, making the probability of 
detecting WNV infection by molecular 
testing relatively low. Viral RNA can be 
detected in blood from 2 to 18 days 
post-infection and up to 5 days post 
onset of symptoms. The sensitivity in 
a whole blood sample is 86.8%, and it 
is lower in CSF. WNV is excreted in the 
urine during acute infection and remains 
detectable for a longer period than in 
the blood. Therefore, urine may be a 
useful non-invasive specimen to detect 
WNV. According to the European Centre 
for Disease Control and Prevention 

(ECDC), whole blood is the preferred sample for testing.

To date, there is no specific treatment for WNV disease (7). Treatment is 
supportive. Treatment with intravenous immunoglobulin (IVIG) in 2 cases 
of AFP has been described, but it is unclear whether it has any effect 
(11). Research into specific IVIG with high anti-WNV titers, monoclonal 
antibodies, antivirals, and the potential benefits of corticosteroids in 
aiding recovery is still in its early stages (23). 

Unlike in horses, there is no vaccine available for humans. However, 
a number of human vaccine candidates is in preclinical development 
(24, 25).

After recovery, immunity to WNV is thought to be lifelong (12).

Epidemiology of human WNV disease in European 
countries
Geographic distribution
The ECDC has reported a total of 825 human cases of West Nile Virus 
(WNV) infection across the European Union (EU), European Economic 
Area (EEA), and European Enlargement countries in 2023 (14). This is 
the third highest number of cases after the peak years of 2018 (1549 
cases) and 2022 (1116 cases). The geographic distribution is shown in 
Figure 2. There were 65 deaths (0.8%). 

804 cases were due to locally acquired infection. 21 cases were travel-
related (13 of which were in another European country). Most cases 
occurred between July and September. 

Figure 1: West Nile virus transmission cycle (CDC).
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West Nile Virus Transmission Cycle 
In nature, West Nile virus cycles between mosquitoes (especially Culex species) and birds.  Some infected birds, can develop high levels of the virus 
in their bloodstream and mosquitoes can become infected by biting these infected birds. After about a week, infected mosquitoes can pass the virus 
to more birds when they bite. 

Mosquitoes with West Nile virus also bite and infect people, horses and other mammals. However, humans, horses and other mammals are ‘dead end’ 
hosts.  This means that they do not develop high levels of virus in their bloodstream, and cannot pass the virus on to other biting mosquitoes. 
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Figure 2: Number of cases in 2023 by country. 
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Importantly, although there were fewer cases than in 2022, the number 
of affected regions increased by 31%, indicating a geographic expansion 
of the virus. This expansion is illustrated in Figure 3, a comparison 
between the years 2013 and 2023, in which a westward expansion 
can be observed. 

In 2023, there were no cases of WNV reported in Belgium. However, 
between 2012 and 2022, 7 cases were recorded, all of which were 
travel-associated (26).

Dynamics of infection
The co-occurrence of WNV, mosquito vectors, primary avian hosts, and 
susceptible humans is necessary for the emergence and spread of an 
epidemic. In addition, there is the influence of climate and environment. 
All these elements influence the dynamics of infection. 

In Europe, human WNV infections are mainly caused by WNV lineages 
1a and 2. Historically, lineage 1a has been the most important. 
However, in 2004, lineage 2 emerged in Hungary and became 
responsible for most outbreaks between 2010 and 2020 (27). This 
lineage originated from South Africa and was probably introduced 
into Hungary by migratory birds between 1996 and 2004 (27, 
28). The spread of WNV lineage 2 eventually resulted in a major 
outbreak in Europe in 2018, marking the highest number of human 
cases ever recorded in the EU/EEA. Similar to other viruses, WNV 
lineages undergo mutations in the genome. This genetic plasticity 
poses a constant risk of the emergence of genotypes with increased 
virulence (29). Shifts in lineage and/or virulence have been associated 
with regional spread of the virus. Shifts may occur locally or, more 
importantly, as a result of the reintroduction of variant virus clades 
by migratory birds. Such reintroductions are common in Europe. 
Genomic analyses have identified at least 13 reintroductions with 
multi-year persistence (27). This is illustrated by the emergence of a 
new, more pathogenic WNV 1a variant in northern Italy in 2021 (30). 

Mosquitoes of the genus Culex (Cx) are a major vector of WNV (31). 
Mosquitoes become infected with WNV when they suck blood from a sick 
bird. After development, the virus ends up in their salivary glands and 
is transmitted during the next blood meal. The virus does not harm the 
mosquitoes, which can carry the virus for life (32). In addition, vertical 
transmission from infected female mosquitoes to their offspring has 
been described, which contributes to the survival of WNV (33, 34). In 
Belgium Cx pipiens and Cx torrentium are the most prevalent Cx species 
(35, 36). There are 2 biotypes of Cx pipiens: Cx pipiens pipiens and Cx 
pipiens molestus, as well as hybrid forms that combine characteristics 
of both biotypes. Cx pipiens pipiens is an ornithophilic mosquito that 
mainly bites birds and occasionally humans. It plays an important role 
in the enzootic mosquito-bird-mosquito cycle. Cx pipiens molestus and 
the hybrid forms are more anthropophilic and act as bridging vectors 
to humans and other mammals. Cx torrentium is also an ornithophilic 
species but also considered a bridging vector (37). Another Culex species, 
Cx modestus, is increasingly found in Europe, including Belgium. This 

species is anthropophilic and may be more competent at transmitting 
WNV to humans than Cx pipiens (38, 39). 

Birds are natural hosts and reservoirs for WNV. The mosquito-bird-
mosquito cycle maintains the circulation of the virus. Migratory birds 
are considered important introducers of WNV into new regions (5, 40). 
Outbreaks of WNV infection often occur in late summer and early fall, 
coinciding with the arrival of large numbers of migratory birds. Infection 
of migratory birds has been documented by virus isolation and antibody 
detection. Domestic birds can also become infected. 

Disease in birds is characterized by loss of coordination, head tilt, tremors, 
weakness, and apparent loss of vision (32). The susceptibility of birds varies, 
with corvids (crows, jays, ravens, magpies) being most likely to die from 
the disease. Birds of prey (owls, falcons, hawks, etc.) are also particularly 
susceptible, potentially because they prey on infected animals (41).

Both humans and horses typically do not reach a level or duration of 
viremia adequate to transmit the virus to mosquitoes, making them 
dead-end hosts for WNV. As in humans, infection in horses is usually 
asymptomatic. 10% of infected horses show neurological signs of 
disease; mortality in horses with clinical signs is approximately 33% 
(7, 32). Presumptive diagnosis is made on the basis of specific IgM 
antibodies. Vaccination against WNV is available for horses.

Surveillance of mosquitoes, sick birds and horses by public health 
officials is essential for the detection of WNV.

To initiate and sustain a human epidemic, there must be regular 
interactions between infected mosquitoes and humans. These 
interactions are significantly shaped by environmental factors such as 
temperature, rainfall, wetlands, vegetation, proximity to migratory bird 
routes, periurban environment, and human and mammalian density. 
While understanding the complexities of these relationships on a global 
scale can be challenging, ongoing research is revealing some clear 
connections (5, 42). There is a positive correlation between higher mean 
temperature and mosquito abundance and activity, increased circulation 
of WNV and transmission risk in birds and occurrence of WNV infection 
in humans and mammals. The temperature during the warmest quarter 
of the previous year appears to be the main driver of WNV outbreaks in 
Europe (43). Above-average spring temperatures may also be a precursor 
to an outbreak in the second half of the year. Warmer temperatures also 
influence human behavior by increasing outdoor activities and the risk 
of exposure to mosquitoes. Cx. vectors are present in both rural and 
urban environments, where human population density may also play a 
role in the risk of infection. 

The presence of wetlands is positively associated with the abundance 
of mosquitoes and birds and the transmission of WNV to humans and 
mammals. Proximity to migratory bird flyways is also important.

Climate change could profoundly influence environmental factors. 

Europe is getting warmer (Figure 4). Heat waves are becoming more 
frequent and severe, and summers are getting longer and warmer. This 

Figure 3: Distribution of WNV cases by affected areas, comparison 2013-2023.
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is anticipated to lead to the expansion of viral vectors and hosts, thereby 
facilitating the virus's spread to new areas, particularly in western and 
central Europe. It has been calculated that, depending on the CO2 release 
scenario, the risk of WNV infection could increase by a factor of 2.5 to 
5 (3, 44, 45). There is also an overall trend toward less precipitation in 
southern and western Europe. Drought conditions with stagnant pools 
of water increase the interaction between vectors and hosts, increasing 
the likelihood of virus transmission and disease. But there is also an 
increased risk of exceptional rainfall and flooding, which can bring more 
standing water for mosquito breeding. 

Migratory birds play an important role in introducing the virus to new 
areas (40, 45). They bring the virus to Europe from southern stopovers 
in Africa or the Middle East. The spread of WNV to more northern parts 
of Europe carries the risk of the virus spreading not only from the south 
in the spring, but also from the north during fall migration. Climate 
change may also lead to changes in migratory patterns, which may also 
contribute to the spread of WNV to new regions (46). 

What about Belgium? 
Epidemiologic surveillance of WNV in Belgium is carried out by the 
National Reference Centre for Arboviruses at the Institute of Tropical 
Medicine in Antwerp. Between 2012 and 2022, 7 travel-associated 
human infections were identified. The travelers were all adults and came 
from Djibouti (2), Greece, the Democratic Republic of Congo, South 
Sudan, Serbia, and Kosovo. No autochthonous human infections and no 
infections in birds or horses were identified (26). 

However, there is a clear risk of WNV infection in Belgium. The vectors Cx. 
pipiens pipiens, Cx. pipiens molestus, their hybrids and Cx. torrentium are 
widespread and the presence of Cx. modestus has been demonstrated 
(38, 47). There is a wide variety of native bird species, and Belgium is 
located on the East Atlantic Flyway for migratory birds. Numerous habitats 
foster mosquito-bird interactions, such as nature reserves, wetlands, 
vegetated areas near ponds or lakes, and human-made small bodies of 
stagnant fresh water in periurban regions, like buckets, bottles, gutters, 
and water storage tanks. Belgium has a high human population density, 
along with having the highest number of horses per capita among EU 
countries (48). Additionally, West Nile Virus transmission is ongoing in 
neighboring countries such as France, Germany, and the Netherlands. 
Considering the impact of climate change, it is highly likely that the virus 
will emerge in Belgium in the near future. Therefore, it is worrisome that 
active surveillance of birds and horses was halted in 2017 (26).

Although WNV is notifiable throughout Belgium, only cases acquired in 
Europe need to be reported.

Conclusion
There is a genuine risk of West Nile Virus (WNV) infections in Belgium in 
the near future. It is crucial for pediatricians to give serious consideration 
to WNV when assessing children with unexplained fever, rash, meningitis, 
and/or encephalitis, as well as acute flaccid paralysis during the mosquito 
season.
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